By Topic

Radar HRRP Statistical Recognition With Local Factor Analysis by Automatic Bayesian Ying-Yang Harmony Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lei Shi ; Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Hong Kong, China ; Penghui Wang ; Hongwei Liu ; Lei Xu
more authors

Radar high-resolution range profiles (HRRPs) are typical high-dimensional, non-Gaussian and interdimension dependently distributed data, the statistical modelling of which is a challenging task for HRRP based target recognition. Assuming the HRRP data follow interdimension dependent Gaussian distribution, factor analysis (FA) was recently applied to describe radar HRRPs and a two-phase procedure was used for model selection, showing promising recognition results. Besides the interdimensional dependence, this paper further models the non-Gaussianity of the radar HRRP data by local factor analysis (LFA). Moreover, since the two-phase procedure suffers from extensive computation and inaccurate evaluation on high-dimensional finite HRRPs, we adopt an automatic Bayesian Ying-Yang (BYY) harmony learning, which determines the component number and the hidden dimensionalities of LFA automatically during parameter learning. Experimental results show incremental improvements on recognition accuracy by three implementations, progressively from a two-phase FA, to a two-phase LFA, and then to an automatically learned LFA by BYY harmony learning.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 2 )