By Topic

Three-Dimensional Micrometer-Scale Modeling of Quenching in High-Aspect-Ratio \hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7 - \delta } Coated Conductor Tapes—Part I: Model Development and Validation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wan Kan Chan ; Dept. of Mech. Eng., Florida A&M Univ.-Florida State Univ. (FAMU-FSU), Tallahassee, FL, USA ; Masson, P.J. ; Luongo, C. ; Schwartz, J.

YBa2Cu3O7-δ coated conductors have very slow normal-zone propagation velocity, which renders quench detection and protection very difficult. To develop effective quench detection methods, it is paramount to study the underlying behavior that drives quench propagation at the micrometer-scale level. Toward this end, numerical mixed-dimensional models, composed of multiple high-aspect-ratio thin layers, are developed. The high-aspect-ratio modeling issues are tackled by approximating the thin layers either as a 2-D surface or as an analytical contact resistance interior boundary condition, which also acts as a coupling bridge between the 2-D and 3-D behaviors. The tape models take into account the thermal and electrical physics of each layer in actual conductor dimensions and are implemented using commercial finite-element analysis software. In the first part of this two-part paper, the mixed-dimensional models are introduced and then computationally and experimentally validated. Validations are gauged by comparisons in normal-zone propagation velocity and in the time-dependent voltage and temperature profiles. Results show that the mixed-dimensional models can not only effectively address the high-aspect-ratio modeling issues of thin films but also accurately and efficiently reproduce physical quench phenomena in a coated conductor.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:20 ,  Issue: 6 )