By Topic

Continuous-time update laws with radial basis step length for control of bipedal locomotion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
K. A. Hamed ; Intelligent Systems Laboratory, Electrical Engineering Department, Sharif University of Technology, Tehran, Iran ; N. Sadati ; W. A. Gruver ; G. A. Dumont

Presented is a novel approach for designing continuous-time update laws to update the parameters of stabilising controllers during continuous phases of bipedal walking such that (i) a general cost function, such as the energy of the control input over single support, can be minimised in an online manner, and (ii) the exponential stability of the corresponding limit cycle for the closed-loop impulsive system is not affected. Formally, a class of update laws with a radial basis step length is developed to minimise a cost function in terms of the stabilising controller parameters and initial states of the mechanical system.

Published in:

Electronics Letters  (Volume:46 ,  Issue: 21 )