By Topic

Microwave Characterization Using Ridge Polynomial Neural Networks and Least-Square Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
T. Hacib $^{1}$Laboratoire d'études et de modélisation en électrotechnique, Faculté des Sciences de l'Ingénieur,, Univ. Jijel, BP 98, Ouled Aissa,, Jijel,, Algérie ; Y. Le Bihan ; M. K. Smail ; M. R. Mekideche
more authors

This paper shows that Ridge Polynomial Neural Networks (RPNN) and Least-Square Support Vector Machines (LS-SVM) technique provide efficient tools for microwave characterization of dielectric materials. Such methods avoids the slow learning properties of multilayer perceptrons (MLP) which utilize computationally intensive training algorithms and can get trapped in local minima. RPNN and LS-SVM are combined in this work with the Finite Element Method (FEM) to evaluate the dielectric materials properties. The RPNN is constructed from a number of increasing orders of Pi-Sigma units, it maintains fast learning properties and powerful mapping capabilities of single layer High Order Neural Networks (HONN). LS-SVM is a statistical learning method that has good generalization capability and learning performance. The FEM is used to create the data set required to train the RPNN and LS-SVM. The performance of a LS-SVM model depends on a careful setting of its associated hyper-parameters. In this study the LS-SVM hyper-parameters are optimized by using a Bayesian regularization technique. Results show that LS-SVM can achieve good accuracy and faster speed than neural network methods.

Published in:

IEEE Transactions on Magnetics  (Volume:47 ,  Issue: 5 )