Cart (Loading....) | Create Account
Close category search window
 

A Real-Time H.264/AVC Encoder With Complexity-Aware Time Allocation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chae Eun Rhee ; Dept. of Electr. Eng., Seoul Nat. Univ., Seoul, South Korea ; Jin-Su Jung ; Hyuk-Jae Lee

This paper presents a novel processing time control algorithm for a hardware-based H.264/AVC encoder. The encoder employs three complexity scaling methods partial cost evaluation for fractional motion estimation (FME), block size adjustment for FME, and search range adjustment for integer motion estimation (IME). With these methods, 12 complexity levels are defined to support tradeoffs between the processing time and compression efficiency. A speed control algorithm is proposed to select the complexity level that compresses most efficiently among those that meet the target time budget. The time budget is allocated to each macroblock based on the complexity of the macroblock and on the execution time of other macroblocks in the frame. For main profile compression, an additional complexity scaling method called direction filtering is proposed to select the prediction direction of FME by comparing the costs resulting from forward and backward IMEs. With direction filtering in addition to the three complexity scaling methods for baseline compression, 32 complexity levels are defined for main profile compression. Experimental results show that the speed control algorithm guarantees the processing time to meet the given time budget with negligible quality degradation. Various complexity levels for speed control are also used to speed up the encoding time with a slight degradation in quality and a minor reduction of the compression efficiency.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:20 ,  Issue: 12 )

Date of Publication:

Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.