By Topic

Large-Scale Concept Detection in Multimedia Data Using Small Training Sets and Cross-Domain Concept Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Diou, C. ; Dept. of Electr. & Comput. Eng., Aristotle Univ. of Thes saloniki, Thessaloniki, Greece ; Stephanopoulos, G. ; Panagiotopoulos, P. ; Papachristou, C.
more authors

This paper presents the concept detector module developed for the VITALAS multimedia retrieval system. It outlines its architecture and major implementation aspects, including a set of procedures and tools that were used for the development of detectors for more than 500 concepts. The focus is on aspects that increase the system's scalability in terms of the number of concepts: collaborative concept definition and disambiguation, selection of small but sufficient training sets and efficient manual annotation. The proposed architecture uses cross-domain concept fusion to improve effectiveness and reduce the number of samples required for concept detector training. Two criteria are proposed for selecting the best predictors to use for fusion and their effectiveness is experimentally evaluated for 221 concepts on the TRECVID-2005 development set and 132 concepts on a set of images provided by the Belga news agency. In these experiments, cross-domain concept fusion performed better than early fusion for most concepts. Experiments with variable training set sizes also indicate that cross-domain concept fusion is more effective than early fusion when the training set size is small.

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:20 ,  Issue: 12 )