By Topic

An Efficient, Time-of-Flight-Based Underwater Acoustic Ranging System for Small Robotic Fish

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shatara, S. ; Motorola, Schaumburg, IL, USA ; Xiaobo Tan

Small (decimeter-scale) robotic fish are promising mobile sensor platforms for aquatic environments. Fine-grained localization for dense networks of such robotic fish presents a challenge because of noisy underwater environment, required submeter accuracy, and constraints on onboard processing power and hardware complexity. In this paper, we present an efficient time-of-flight-based acoustic ranging system for localization of robotic fish with limited onboard resources. The system involves simple hardware: a single pair of monotone buzzer and microphone. The distance between two nodes is determined by the time it takes for an acoustic signal generated by the buzzer on the first node to reach the microphone on the second node. The arrival of the signal is detected with the sliding discrete Fourier transform (SDFT) algorithm, where the rise dynamics of the signal is modeled and used for compensation of detection latency. The algorithm is implemented onboard a small biomimetic robotic fish, and experiments in an indoor pool have shown that the compensated SDFT algorithm results in an underwater ranging error of 1.9 wavelengths (1 m), and is thus promising for localization of dense aquatic networks.

Published in:

Oceanic Engineering, IEEE Journal of  (Volume:35 ,  Issue: 4 )