By Topic

Molecular dynamics simulation on LO phonon mode decay in Si nano-structure covered with oxide films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zushi, T. ; Fac. of Sci. & Eng., Waseda Univ., Tokyo, Japan ; Ohdomari, I. ; Watanabe, T. ; Kamakura, Y.
more authors

A series of molecular dynamics (MD) simulations is conducted to investigate the dynamics of longitudinal optical (LO) phonon in Si nano-structure confined with oxide films. This work is motivated by heat issues in nanoscopic devices; it is considered that the LO phonons with low group velocity are accumulated in the nanoscopic device and the electric property deteriorates. We estimate the relaxation time of the LO phonon and investigate its dependency on the oxide thickness. The calculation results show that the LO phonon decays faster as the oxide thickness increases and turns into acoustic phonon. The result indicates that the presence of SiO2 films promotes the scattering of the phonon and this is effective to diminish the optical phonon.

Published in:

Simulation of Semiconductor Processes and Devices (SISPAD), 2010 International Conference on

Date of Conference:

6-8 Sept. 2010