Cart (Loading....) | Create Account
Close category search window

A 5.8 GHz Integrated CMOS Dedicated Short Range Communication Transceiver for the Korea/Japan Electronic Toll Collection System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kuduck Kwon ; Samsung Electron. Co. Ltd., Suwon, South Korea ; Jaeyoung Choi ; Jeongki Choi ; Yongseok Hwang
more authors

In this paper, a RF front-end of the 5.8 GHz integrated CMOS dedicated short range communication (DSRC) transceiver for the Korea/Japan electronic toll collection system is presented. The receiver uses low-IF conversion architecture for high sensitivity and low-power consumption while the transmitter uses direct up-conversion architecture for its simple structure and reliability. To solve image problem in the low-IF receiver, 10 MHz IF and 40 MHz IF are chosen for Korean and Japanese DSRC standards, respectively, since they make no image signals exist in image band. A single-quadrature mixer with the proposed transconductor-type quadrature generator in RF signal path is also adopted which has accurate quadrature characteristic in 5.8 GHz frequency. When the RF front-end of the integrated 5.8 GHz DSRC transceiver is implemented using 0.13 μm CMOS technology, the receiver achieves the overall noise figure of less than 5 dB with image rejection ratio of more than 30 dB, and the transmitter carries an output peak power of 10 dBm with the adjacent channel power ratio of -43 dBc. The RF front-end of the 5.8 GHz DSRC transceiver dissipates 45 mA with 1.2 V supply voltage and 142 mA with 1.2/3.3 V dual supply voltage during RXand TX-modes, respectively.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:58 ,  Issue: 11 )

Date of Publication:

Nov. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.