By Topic

Generation of Optimal Linear Parametric Models for LFT-Based Robust Stability Analysis and Control Design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pfifer, H. ; Inst. of Robot. & Mechatron., German Aerosp. Center-DLR, Wessling, Germany ; Hecker, S.

We present a general approach to generate a linear parametric state-space model, which approximates a nonlinear system with high accuracy and is optimally suited for linear fractional transformation (LFT) based robust stability analysis and control design. At the beginning a Jacobian-based linearization is applied to generate a set of linearized state-space systems describing the local behavior of the nonlinear plant about the corresponding equilibrium points. These models are then approximated using multivariable polynomial fitting techniques in combination with global optimization. The objective is to find a linear parametric model, which allows the transformation into a linear fractional representation (LFR) of least possible order. A gap metric constraint is included during the optimization in order to guarantee a specified accuracy of the transfer function of the linear parametric model. The effectiveness of the proposed method is demonstrated by applying it to a simple benchmark problem as well as to two industrial applications, one being a nonlinear missile model the other a nonlinear transport aircraft model.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:19 ,  Issue: 1 )