By Topic

Full-System Testing in Laboratory Conditions of an L-Band Snow Sensor System for In Situ Monitoring of Snow-Water Content

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Do Hyuk Kang ; Pratt School of Engineering, Duke University, Durham, NC, USA ; Ana P. Barros

An L-band transmitter-receiver system wireless sensor to monitor snow accumulation and snow wetness was designed, fabricated, and tested under laboratory conditions. The sensor was designed to operate at 39 discrete frequencies (39 channels) in the 1.00-1.76-GHz frequency range (0.02-GHz increments). Full-system testing of the first-generation system was conducted using commercial attenuators up to 20.0 dB to test the prototypes against design specifications. It was determined that performance was nearly optimal in the 1-1.2-GHz range. Next, snow layers of varying snow wetness were physically modeled under controlled laboratory conditions. This was achieved by adding varying amounts of water to a layer of fixed porosity foam inside a rectangular tank placed above the transmitter. The attenuation and relative phase shift of the RF signal propagating through the experimental “snowpack” and through the laboratory “atmosphere” were subsequently analyzed as a function of volumetric water content equivalent to snow wetness. Under the space and geometry limitations of the laboratory setup, the data show that the single-frequency measurements exhibit high sensitivity for wetness values up to 24%, whereas multifrequency retrieval is necessary for higher liquid water contents. Measurements from a field deployment during snowfall in January 2009 are also presented. The results suggest that there is potential for using the RF sensor to measure cumulative snowfall for short-duration events.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:49 ,  Issue: 3 )