By Topic

Multivariable Gaussian Evolving Fuzzy Modeling System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lemos, A. ; Electr. Eng., Fed. Univ. of Minas Gerais, Belo Horizonte, Brazil ; Caminhas, W. ; Gomide, F.

This paper introduces a class of evolving fuzzy rule-based system as an approach for multivariable Gaussian adaptive fuzzy modeling. The system is an evolving Takagi-Sugeno (eTS) functional fuzzy model, whose rule base can be continuously updated using a new recursive clustering algorithm based on participatory learning. The fuzzy sets of the rule antecedents are multivariable Gaussian membership functions, which have been adopted to preserve information between input variable interactions. The parameters of the membership functions are estimated by the clustering algorithm. A weighted recursive least-squares algorithm updates the parameters of the rule consequents. Experiments considering time-series forecasting and nonlinear system identification are performed to evaluate the performance of the approach proposed. The multivariable Gaussian evolving fuzzy models are compared with alternative evolving fuzzy models and classic models with fixed structures. The results suggest that multivariable Gaussian evolving fuzzy modeling is a promising approach for adaptive system modeling.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:19 ,  Issue: 1 )