By Topic

Fractional calculus, delay dynamics and networked control systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yang Quan Chen ; Dept. of Electr. & Comput. Eng., Utah State Univ., Logan, UT, USA

In networked control systems (NCS), the spiky nature of the random delays makes us wonder about the benefits we can expect if the spikiness, or what we call delay dynamics can be considered in the NCS controller design. It turns out that the spikiness of the network induced random delays can be better characterized by the so-called α-stable processes, or processes with fractional lower-order statistics (FLOS) which are linked to fractional calculus. Many real dynamic systems are better characterized using a noninteger order dynamic model based on fractional calculus or, differentiation or integration of non-integer order. Traditional calculus is based on integer order differentiation and integration. The concept of fractional calculus has tremendous potential to change the way we see, model, and control the nature around us. Denying fractional derivatives is like saying that zero, fractional, or irrational numbers do not exist. This article proposes a transformative research idea to link fractional calculus, delay dynamics and NCSs. Specifically, fractional order modeling of delay dynamics will be used to better characterize the dynamic delay behavior. Then, a fractional order controller will be designed based on the fractional order delay dynamic model. Initial evidence confirmed that, incorporating delay dynamics in the controller design offers improved NCS control performance.

Published in:

Resilient Control Systems (ISRCS), 2010 3rd International Symposium on

Date of Conference:

10-12 Aug. 2010