By Topic

RT2: A Real-Time Ray-Tracing method for acoustic distance evaluations among cooperating AUVs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Casalino, G. ; Dept. of Commun. Comput. & Syst. Sci., Univ. of Genova, Genova, Italy ; Turetta, A. ; Simetti, E. ; Caiti, A.

The paper deals with the problem of distributed acoustic localization of teams of Autonomous Underwater Vehicles (AUVs) and proposes a novel algorithm, Real-Time Ray-Tracing (RT2), for evaluating the distance between any pair of AUVs in the team. The technique, based on a modified formulation of the non-linear sound-ray propagation laws, allows efficiently handling the distorted and reflected acoustic ray paths, induced by the anisotropy of the underwater medium. Further it can be easily implemented on-board of low-cost AUVs. Indeed it just requires the presence, on each vehicle, of a simple acoustic modem and a pair of look-up tables, a-priori constructed via the assumed knowledge of the depth-dependent sound velocity profile. On such a basis, every AUV can easily on-line compute its distance w.r.t. to any other neighbour team member, through time-of-flight measurements and the exchanges of depth information only. Further, since the proposed RT2 algorithm makes available accurate distance evaluations (despite the distorted acoustic rays), the effective filtering techniques normally used by terrestrial mobile robots for distributed localization are expected to be transferable to the underwater field.

Published in:

OCEANS 2010 IEEE - Sydney

Date of Conference:

24-27 May 2010