By Topic

Neutronic Evaluation of a MHR System to Transmutation of Minor Actinides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Silva, C.A.M. ; Dept. de Eng. Nucl., Univ. Fed. de Minas Gerais, Belo Horizonte, Brazil ; Pereira, C. ; Veloso, M.A.F. ; Costa, A.L.

The goal is to simulate the modular helium reactor (MHR) core to analyze the neutronic parameters behavior due the insertion of Pu isotopes and minor actinides (MAs) using shuffling scheme without compromising the safety parameters. Initially the core is filled with driver fuel (DF). After the burn-up, these fuels are then reprocessed and used to produce the transmutation fuel (TF). Some cycles after, the core is filled with DF and TF fuels. DF fuel is composed of Pu and Np while TF fuel is a mixture of Pu and MAs. The shuffling scheme was evaluated after each cycle. It was verified that neutronic parameters and isotopic composition reach equilibrium when this scheme is used. The WIMS code was used to perform the simulations and the following neutronic parameters were evaluated: infinite multiplication factor, spectrum hardening, and reactivity temperature coefficients.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:57 ,  Issue: 5 )