By Topic

Functionally distributed systems using parallel Genetic Network Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yiwen Zhang ; Grad. Sch. of Inf., Production & Syst., Waseda Univ., Tokyo, Japan ; Xianneng Li ; Yang Yang ; Mabu, S.
more authors

Genetic Network Programming (GNP), one of the evolutionary computational methods, can generate behavior sequences of agents. In this paper, a new method named parallel GNP has been proposed and applied to functionally distributed systems consisted of several tasks. GNPs corresponding to several tasks in parallel GNP operate separately and independently but concurrently, dealing with the conflicts in task execution. Parallel GNP converges faster and has better fitness results than conventional GNP, which was shown by simulations comparing with conventional GNP on dynamic problems.

Published in:

SICE Annual Conference 2010, Proceedings of

Date of Conference:

18-21 Aug. 2010