By Topic

New Conceptual Coupling and Cohesion Metrics for Object-Oriented Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Újházi, B. ; Dept. of Software Eng., Univ. of Szeged, Szeged, Hungary ; Ferenc, R. ; Poshyvanyk, D. ; Gyimothy, T.

The paper presents two novel conceptual metrics for measuring coupling and cohesion in software systems. Our first metric, Conceptual Coupling between Object classes (CCBO), is based on the well-known CBO coupling metric, while the other metric, Conceptual Lack of Cohesion on Methods (CLCOM5), is based on the LCOM5 cohesion metric. One advantage of the proposed conceptual metrics is that they can be computed in a simpler (and in many cases, programming language independent) way as compared to some of the structural metrics. We empirically studied CCBO and CLCOM5 for predicting fault-proneness of classes in a large open source system and compared these metrics with a host of existing structural and conceptual metrics for the same task. As the result, we found that the proposed conceptual metrics, when used in conjunction, can predict bugs nearly as precisely as the 58 structural metrics available in the Columbus source code quality framework and can be effectively combined with these metrics to improve bug prediction.

Published in:

Source Code Analysis and Manipulation (SCAM), 2010 10th IEEE Working Conference on

Date of Conference:

12-13 Sept. 2010