By Topic

MMSE DFE Transceiver Design Over Slowly Time-Varying MIMO Channels Using ST-GTD

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chih-Hao Liu ; California Inst. of Technol.(Caltech), Pasadena, CA, USA ; Vaidyanathan, P.P.

In a companion paper, we have studied the zero-forcing (ZF) transceiver with decision feedback equalizer (DFE) over slowly time-varying narrowband multiinput multioutput (MIMO) channels. The space-time generalized triangular decomposition (ST-GTD) was used for the design of ZF-DFE transceivers. The space-time geometric mean decomposition (ST-GMD) ZF transceiver minimizes both the arithmetic mean square error (MSE) at the feedback detector and the average uncoded bit error rate (BER) in moderate high signal-to-noise ratio (SNR). This paper addresses the design problem of DFE transceiver without zero-forcing constraint. In the first part, a channel independent temporal precoder is superimposed on the conventional block-wise GMD-based minimum mean square error (MMSE) DFE transceiver to take advantage of the temporal diversity. In the second part, ST-GTD is applied for the design of MMSE DFE transceivers. With accurate channel prediction and space-time powerloading, the proposed ST-GMD MMSE transceiver minimizes the arithmetic MSE at the feedack detector, and maximizes Gaussian mutual information. For practical applications, the ST-GTD MMSE transceiver which does not require channel prediction but shares the same asymptotic BER performance with the ST-GMD MMSE system is also developed. In the convex region, our analysis shows that the proposed MMSE transceivers has better BER performance than the conventional GMD-based MMSE transceiver; the average BERs of the proposed systems are nonincreasing functions of the ST-block size. The superior performance of ST-GMD MMSE transceiver over the ST-GMD ZF transceiver is also verified analytically.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 1 )