By Topic

Grid-Filter Design for a Multimegawatt Medium-Voltage Voltage-Source Inverter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rockhill, A.A. ; Adv. Technol. Dept., American Supercond. Inc., Middleton, WI, USA ; Liserre, M. ; Teodorescu, R. ; Rodriguez, P.

This paper describes the design procedure and performance of an LCL grid filter for a medium-voltage neutral-point clamped converter to be adopted for a multimegawatt (multi-MW) wind turbine. The unique filter design challenges in this application are driven by a combination of the medium-voltage converter, a limited allowable switching frequency, component physical size and weight concerns, and the stringent limits for allowable injected current harmonics. Traditional design procedures of grid filters for lower power and higher switching frequency converters are not valid for a multi-MW filter connecting a medium-voltage converter switching at low frequency to the electric grid. This paper demonstrates a frequency-domain-model-based approach to determine the optimum filter parameters that provide the necessary performance under all operating conditions given the necessary design constraints. To achieve this goal, new concepts, such as virtual-harmonic content and virtual filter losses are introduced. Moreover, a new passive-damping technique that provides the necessary damping with low losses and very little degradation of the high-frequency attenuation is proposed.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 4 )