By Topic

A Kernel Fuzzy c-Means Clustering-Based Fuzzy Support Vector Machine Algorithm for Classification Problems With Outliers or Noises

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaowei Yang ; Department of Mathematics, School of Sciences, South China University of Technology, Guangzhou, China ; Guangquan Zhang ; Jie Lu ; Jun Ma

The support vector machine (SVM) has provided higher performance than traditional learning machines and has been widely applied in real-world classification problems and nonlinear function estimation problems. Unfortunately, the training process of the SVM is sensitive to the outliers or noises in the training set. In this paper, a common misunderstanding of Gaussian-function-based kernel fuzzy clustering is corrected, and a kernel fuzzy c-means clustering-based fuzzy SVM algorithm (KFCM-FSVM) is developed to deal with the classification problems with outliers or noises. In the KFCM-FSVM algorithm, we first use the FCM clustering to cluster each of two classes from the training set in the high-dimensional feature space. The farthest pair of clusters, where one cluster comes from the positive class and the other from the negative class, is then searched and forms one new training set with membership degrees. Finally, we adopt FSVM to induce the final classification results on this new training set. The computational complexity of the KFCM-FSVM algorithm is analyzed. A set of experiments is conducted on six benchmarking datasets and four artificial datasets for testing the generalization performance of the KFCM-FSVM algorithm. The results indicate that the KFCM-FSVM algorithm is robust for classification problems with outliers or noises.

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:19 ,  Issue: 1 )