Cart (Loading....) | Create Account
Close category search window

On the Influence of the Number of Objectives on the Hardness of a Multiobjective Optimization Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schutze, O. ; Dept. of Comput. Sci., CINVESTAV IPN, Mexico City, Mexico ; Lara, A. ; Coello Coello, Carlos A.

In this paper, we study the influence of the number of objectives of a continuous multiobjective optimization problem on its hardness for evolution strategies which is of particular interest for many-objective optimization problems. To be more precise, we measure the hardness in terms of the evolution (or convergence) of the population toward the set of interest, the Pareto set. Previous related studies consider mainly the number of nondominated individuals within a population which greatly improved the understanding of the problem and has led to possible remedies. However, in certain cases this ansatz is not sophisticated enough to understand all phenomena, and can even be misleading. In this paper, we suggest alternatively to consider the probability to improve the situation of the population which can, to a certain extent, be measured by the sizes of the descent cones. As an example, we make some qualitative considerations on a general class of uni-modal test problems and conjecture that these problems get harder by adding an objective, but that this difference is practically not significant, and we support this by some empirical studies. Further, we address the scalability in the number of objectives observed in the literature. That is, we try to extract the challenges for the treatment of many-objective problems for evolution strategies based on our observations and use them to explain recent advances in this field.

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:15 ,  Issue: 4 )

Date of Publication:

Aug. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.