By Topic

Alpha-Level Aggregation: A Practical Approach to Type-1 OWA Operation for Aggregating Uncertain Information with Applications to Breast Cancer Treatments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shang-Ming Zhou ; Health Inf. Res. Unit, Swansea Univ., Swansea, UK ; Chiclana, F. ; John, R.I. ; Garibaldi, J.M.

Type-1 Ordered Weighted Averaging (OWA) operator provides us with a new technique for directly aggregating uncertain information with uncertain weights via OWA mechanism in soft decision making and data mining, in which uncertain objects are modeled by fuzzy sets. The Direct Approach to performing type-1 OWA operation involves high computational overhead. In this paper, we define a type-1 OWA operator based on the alpha-cuts of fuzzy sets. Then, we prove a Representation Theorem of type-1 OWA operators, by which type-1 OWA operators can be decomposed into a series of alpha-level type-1 OWA operators. Furthermore, we suggest a fast approach, called Alpha-Level Approach, to implementing the type-1 OWA operator. A practical application of type-1 OWA operators to breast cancer treatments is addressed. Experimental results and theoretical analyses show that: 1) the Alpha-Level Approach with linear order complexity can achieve much higher computing efficiency in performing type-1 OWA operation than the existing Direct Approach, 2) the type-1 OWA operators exhibit different aggregation behaviors from the existing fuzzy weighted averaging (FWA) operators, and 3) the type-1 OWA operators demonstrate the ability to efficiently aggregate uncertain information with uncertain weights in solving real-world soft decision-making problems.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:23 ,  Issue: 10 )