By Topic

Reliability-Driven ECC Allocation for Multiple Bit Error Resilience in Processor Cache

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Somnath Paul ; Case Western Reserve University, Cleveland ; Fang Cai ; Xinmiao Zhang ; Swarup Bhunia

With increasing parameter variations in nanometer technologies, on-chip cache in processor is becoming highly vulnerable to runtime failures induced by “soft error,” voltage, or thermal noise and aging effects. Nondeterministic and unreliable memory operation due to these runtime failures can be addressed by: 1) designing the memory for worst-case scenarios and/or 2) runtime error detection and correction. Worst-case guard-banding can lead to overly pessimistic results for cell footprint and power. On the other hand, conventional error correcting code (ECC) used in processor cache has very limited correction capability, making it insufficient to protect memory in scaled technologies (sub-45 nm), which are vulnerable to multiple-bit failures in a word (64-bit). The requirement to tolerate multibit failures is accentuated with supply voltage scaling for low-power operation. We note that due to inter and intra-die parameter variations, different memory blocks move to different reliability corners. A uniform ECC protection for all memory blocks fails to account for the distribution of vulnerability across memory blocks. On the other hand, it can lead to overly pessimistic results if the worst-case vulnerability of a memory block is accounted for during ECC allocation. In this paper, we propose a reliability-driven ECC allocation scheme that matches the relative vulnerability of a memory block (determined using postfabrication characterization) with appropriate ECC protection. We achieve postfabrication variable ECC allocation by storing the check bits in the “ways” of an associative cache. We use shortened Bose-Chaudhuri-Hocquenghem (BCH) cyclic code with zero padding, which provides high random error correction capability with modest amount of check bits. Moreover, we propose efficient circuit/architecture-level optimizations of the ECC encoding/decoding logic to minimize the impact on area, performance, and energy. Simulation results fo- - r SPEC2000 benchmarks show that such a variable ECC scheme tolerates high failure rates with negligible performance (four percent) and area (0.2 percent) penalty.

Published in:

IEEE Transactions on Computers  (Volume:60 ,  Issue: 1 )