By Topic

A quantitative analysis of the separation of aluminum cans out of a waste stream based on eddy current induced levitation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Woltereck, M. ; Dept. of Electr. & Comput. Eng., Worcester Polytech. Inst., MA, USA ; Ludwig, R. ; Michalson, W.

Eddy current induced levitation can be employed to separate conducting from nonconducting materials as in the recycling of aluminum products. To investigate magnetic fields, eddy currents, and forces, a multiple strategy involving analytical, numerical, and experimental analysis techniques is implemented. In particular, the configuration of an aluminum can over an arrangement of multiple coils is investigated with a two-dimensional parametric finite element model. The results from these simulations are compared to measurements of a practical levitation device. To establish the fidelity of the finite element model, we applied the method to two simplified geometries of a thick and a thin slab extended over a conducting wire. For the first case, an analytical inverse Laplace-transform model for the eddy current density is developed. For the second case, Lorentz forces exerted on the thin slab are analytically obtained by employing Maxwell's moving image method. In addition, an approximation to the moving image method is derived which can be described by an equivalent resonance circuit

Published in:

Magnetics, IEEE Transactions on  (Volume:33 ,  Issue: 1 )