By Topic

The AMT maglev test sled-EML weapons technology transition to transportation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Schaaf, J.C. ; BDM Federal, Huntsville, AL, USA ; Zowarka, R.C., Jr. ; Davey, K. ; Weldon, J.M.

Technology spinoffs from prior electromagnetic launcher work enhance a magnetic levitation transportation system test bed being developed by American Maglev Technology of Florida. This project uses a series wound linear DC motor and brushes to simplify the magnetic levitation propulsion system. It takes advantage of previous related work in electromagnetic launcher technology to achieve success with this innovative design. Technology and knowledge gained from developments for homopolar generators and proposed rail gun are control are key to successful performance. This contribution supports a cost effective design that is competitive with alternative concepts. Brushes transfer power from the guideway (rail) to the vehicle (armature) in a novel design that activates the guideway only under the vehicle, reducing power losses and guideway construction costs. The vehicle carries no power for propulsion and levitation, and acts only as a conduit for the power through the high speed brushes. Brush selection and performance is based on previous EML homopolar generator research. A counterpulse circuit, first introduced in an early EML conference, is used to suppress arcing on the trailing brush and to transfer inductive energy to the next propulsion coil. Isolated static lift and preliminary propulsion tests have been completed, and integrated propulsion and lift tests are scheduled in early 1996

Published in:

Magnetics, IEEE Transactions on  (Volume:33 ,  Issue: 1 )