Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

An Evaluation of Entropy Based Approaches to Alert Detection in High Performance Cluster Logs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Makanju, A. ; Fac. of Comput. Sci., Dalhousie Univ., Halifax, NS, Canada ; Zincir-Heywood, A.N. ; Milios, E.E.

Manual alert detection on modern high performance clusters (HPC) is cumbersome given their increasing complexity and size of their logs. The ability to automatically detect such alerts quickly and accurately with little or no human intervention is therefore desirable. The entropy-based approach of the Nodeinfo framework, which is in production use at Sandia National Laboratories, is one approach to automatic alert detection in HPC logs. In this work, we perform a comparative evaluation of three entropy based techniques, which are modifications to Nodeinfo. We evaluate these systems using three performance metrics, namely (i) Computational cost, (ii) detection accuracy, and (iii) false positive rate. Our results show that there is still room for improvement in entropy based approaches to the task of alert detection. We also show experimentally that it is possible to detect 100% of all alerts while maintaining an effective false positive rate of 0% using an entropy based approach. Our work suggests that entropy based approaches are viable for automatic alert detection in HPC and can improve the dependability of such systems if applied.

Published in:

Quantitative Evaluation of Systems (QEST), 2010 Seventh International Conference on the

Date of Conference:

15-18 Sept. 2010