By Topic

Improving Parallel I/O Performance with Data Layout Awareness

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yong Chen ; Comput. Sci. & Math. Div., Oak Ridge Nat. Lab., Oak Ridge, TN, USA ; Xian-He Sun ; Thakur, R. ; Huaiming Song
more authors

Parallel applications can benefit greatly from massive computational capability, but their performance suffers from large latency of I/O accesses. The poor I/O performance has been attributed as a critical cause of the low sustained performance of parallel computing systems. In this study, we propose a data layout-aware optimization strategy to promote a better integration of the parallel I/O middleware and parallel file systems, two major components of the current parallel I/O systems, and to improve the data access performance. We explore the layout-aware optimization in both independent I/O and collective I/O, two primary forms of I/O in parallel applications. We illustrate that the layout-aware I/O optimization could improve the performance of current parallel I/O strategy effectively. The experimental results verify that the proposed strategy could improve parallel I/O performance by nearly 40% on average. The proposed layout-aware parallel I/O has a promising potential in improving the I/O performance of parallel systems.

Published in:

Cluster Computing (CLUSTER), 2010 IEEE International Conference on

Date of Conference:

20-24 Sept. 2010