By Topic

A 5 mm ^{2} 40 nm LP CMOS Transceiver for a Software-Defined Radio Platform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)

A 5 mm2 transceiver front-end suitable for a software-defined radio (SDR) platform is implemented in a 40-nm LP digital CMOS technology. Tailored for all modern communication standards relevant for a modern handheld mobile device (2G/3G/4G cellular, WLAN, Bluetooth, GPS, broadcasting, etc.), it uses radio architectures and circuits that ensure flexible performance at a minimal cost in area and power consumption. The receive section features four parallel LNAs to cover the frequency range from 100 MHz up to 6 GHz, a 25 % duty cycle passive mixer with IIP2 calibration, fifth-order baseband filtering up to 20 MHz, variable-gain amplification, and a 10-b 65 MS/s 34 fj/conv-step SAR ADC. It achieves NF down to 2.4 dB, more than 30-dB EVM and 50-dBm IIP2. In the transmit section, main emphasis is given to the out-of-band noise requirement that enables SAW-less operation in FDD systems: a flexible reconstruction filter is followed by a voltage-sampling mixer and a variable gain PPA. The TX chain achieves 3.2% EVM at 0-dBm output power, with CNR down to-156 dBc/Hz. For frequency synthesis, two dual-VCO 5.9-12.8 GHz fractional-N PLLs are implemented together with a chain of divide-by-2 circuits for quadrature generation.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:45 ,  Issue: 12 )