Cart (Loading....) | Create Account
Close category search window
 

HiPIMS Ion Energy Distribution Measurements in Reactive Mode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jouan, P.-Y. ; Inst. des Mater. Jean Rouxel, Univ. of Nantes, Nantes, France ; Le Brizoual, L. ; Ganciu, M. ; Cardinaud, Christophe
more authors

In this paper, mass spectrometry was used to measure the ion energy distributions of the main species during the sputtering of an aluminum target in a reactive Ar + N2 mixture. Both conventional magnetron sputtering (dc) and high-power impulse magnetron sputtering (HiPIMS) were used. It appears that, in the HiPIMS, N+ and Al+ ions are significantly more energetic (up to 70 eV) than in the dc (<;40 eV). Furthermore, the HiPIMS Al+ signal is two orders of magnitude greater than in the dc, and time-resolved measurements indicate that most of the ion flux hits the substrate during the OFF time of the impulse sequence.

Published in:

Plasma Science, IEEE Transactions on  (Volume:38 ,  Issue: 11 )

Date of Publication:

Nov. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.