By Topic

Stochastic Tubes in Model Predictive Control With Probabilistic Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mark Cannon ; University of Oxford, Oxford, United Kingdom ; Basil Kouvaritakis ; Saša V. Rakovic ; Qifeng Cheng

Stochastic model predictive control (MPC) strategies can provide guarantees of stability and constraint satisfaction, but their online computation can be formidable. This difficulty is avoided in the current technical note through the use of tubes of fixed cross section and variable scaling. A model describing the evolution of predicted tube scalings facilitates the computation of stochastic tubes; furthermore this procedure can be performed offline. The resulting MPC scheme has a low online computational load even for long prediction horizons, thus allowing for performance improvements. The efficacy of the approach is illustrated by numerical examples.

Published in:

IEEE Transactions on Automatic Control  (Volume:56 ,  Issue: 1 )