Cart (Loading....) | Create Account
Close category search window

Design and Fabrication of a High-Power Eyeball-Like Microactuator Using a Symmetric Piezoelectric Pusher Element

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sheng-Chih Shen ; Dept. of Syst. & Naval Mechatron. Eng., Nat. Cheng Kung Univ., Tainan, Taiwan ; Juin-Cherng Huang

A novel multidegree-of-freedom (MDOF) eyeball-like microactuator was developed using a symmetric piezoelectric plate and an Ni-Co alloy micropusher element. A LIGA-like technique was employed to manufacture an Ni-Co alloy micropusher with a Vickers hardness value of 550, which was then attached at the midpoint of the long side of a piezoelectric plate with dual electrodes to construct a symmetric piezoelectric pusher element (SPPE). The research integrated the concept of LEGO bricks, and three different vibration modes of the SPPE were designed to develop a high-power MDOF motion platform, which was able to rotate a spherical charge-coupled device (CCD) along three perpendicular axes. This MDOF eyeball-like microactuator consisted of a stator and a rotor: The stator was created from two mutually orthogonal sets of parallel SPPEs to form an MDOF motion platform, and the rotor was a spherical CCD. The experiment demonstrated high-power MDOF eyeball-like microactuator working frequencies along the X-, Y-, and .Z-axes to be 223.4, 223.2, and 225 kHz and the rotation speeds to reach 50, 52, and 180 r/min, respectively, at a driving voltage of 30 Vpp. The volume ratio of rotor to stator was 20.32, and this design can therefore drive a rotor of a volume greater than ten times that of the stator. In addition, the driving voltage was proportional to the rotation speed; hence, when the rotor diameter was increased or the spherical rotor weight reduced, the rotation speed increased. In the future, this MODF eyeball-like microactuator may be used for a number of applications, such as sun-tracking systems for green-energy harvesters and eyeball-like devices for use in the biomedical field.

Published in:

Microelectromechanical Systems, Journal of  (Volume:19 ,  Issue: 6 )

Date of Publication:

Dec. 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.