Cart (Loading....) | Create Account
Close category search window
 

Predictive Graphical User Interface Elements to Improve Crane Operator Performance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vaughan, J. ; Woodruff Sch. of Mech. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Smith, A. ; Se Joong Kang ; Singhose, W.

Operating cranes is challenging because the payload significantly lags behind the control input and can undergo large amplitude oscillations. While significant work has been directed at reducing the payload swing, little effort has been placed on reducing the time lag. There is a good reason for neglecting the time lag; it cannot be eliminated. It is a result of the physical limitations of the crane; motor torque limits coupled with the very large inertia of cranes and their payloads cause sluggish behavior. Experienced crane operators become accustomed to the time lag and develop the skill to start decelerating the crane well before the desired stopping location. This paper presents a control method that aids the human operator by graphically displaying a prediction of where the crane will stop. This predictive element is combined with an input-shaping controller that both reduces the payload swing and simplifies the implementation of the predictive element. Results from a study of crane operators show that the proposed control system significantly improves tower crane performance, in terms of both task completion time and positioning accuracy.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:41 ,  Issue: 2 )

Date of Publication:

March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.