By Topic

Efficient PageRank and SpMV Computation on AMD GPUs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tianji Wu ; Dept. of Electron. Eng., Tsinghua Univ., Beijing, China ; Bo Wang ; Yi Shan ; Feng Yan
more authors

Google's famous PageRank algorithm is widely used to determine the importance of web pages in search engines. Given the large number of web pages on the World Wide Web, efficient computation of PageRank becomes a challenging problem. We accelerated the power method for computing PageRank on AMD GPUs. The core component of the power method is the Sparse Matrix-Vector Multiplication (SpMV). Its performance is largely determined by the characteristics of the sparse matrix, such as sparseness and distribution of non-zero values. Based on careful analysis on the web linkage matrices, we design a fast and scalable SpMV routine with three passes, using a modified Compressed Sparse Row format. Our PageRank computation achieves 15x speedup on a Radeon 5870 Graphic Card compared with a PhenomII 965 CPU at 3.4GHz. Our method can easily adapt to large scale data sets. We also compare the performance of the same method on the OpenCL platform with our low-level implementation.

Published in:

Parallel Processing (ICPP), 2010 39th International Conference on

Date of Conference:

13-16 Sept. 2010