By Topic

Parallel Exact Inference on a CPU-GPGPU Heterogenous System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hyeran Jeon ; Ming Hsieh Dept. of Electr. Eng., Univ. of Southern California, Los Angeles, CA, USA ; Yinglong Xia ; Viktor K. Prasanna

Exact inference is a key problem in exploring probabilistic graphical models. The computational complexity of inference increases dramatically with the parameters of the graphical model. To achieve scalability over hundreds of threads remains a fundamental challenge. In this paper, we use a lightweight scheduler hosted by the CPU to allocate cliques in junction trees to the GPGPU at run time. The scheduler merges multiple small cliques or splits large cliques dynamically so as to maximize the utilization of the GPGPU resources. We implement node level primitives on the GPGPU to process the cliques assigned by the CPU. We propose a conflict free potential table organization and an efficient data layout for coalescing memory accesses. In addition, we develop a double buffering based asynchronous data transfer between CPU and GPGPU to overlap clique processing on the GPGPU with data transfer and scheduling activities. Our implementation achieved 30× speedup compared with state-of-the-art multicore processors.

Published in:

2010 39th International Conference on Parallel Processing

Date of Conference:

13-16 Sept. 2010