By Topic

Teaching Behavioral Modeling and Simulation Techniques for Power Electronics Courses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Abramovitz, A. ; Electr. & Electron. Eng., Sami Shamoon Coll. of Eng., Beer-Sheva, Israel

This paper suggests a pedagogical approach to teaching the subject of behavioral modeling of switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The methodology is oriented toward electrical engineering (EE) students at the undergraduate level, enrolled in courses such as “Power Electronics,” “Industrial Electronics,” or the like. The proposed approach is demonstrated by simulation example of a realistic active power factor corrector (APFC) system. The paper discusses the derivation of PSPICE/ORCAD-compatible behavioral models, their software implementation, and fast time domain, frequency domain, and stability analysis simulation techniques suitable for virtual study of complex nonlinear feedback systems. Some “tricks of the trade” are also suggested. The paper can be helpful to instructors of a “Virtual Power Electronics Laboratory” course wanting to conduct a software experiment on a PFC system.

Published in:

Education, IEEE Transactions on  (Volume:54 ,  Issue: 4 )