Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Adaptive Interrogation for Fast Optical Sensing Based on Cascaded Micro-Ring Resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mesaritakis, C. ; Dept. of Inf. & Telecommun., Nat. Kapodistrian Univ. of Athens, Athens, Greece ; Argyris, A. ; Grivas, E. ; Kapsalis, A.
more authors

An adaptive interrogation technique that employs integrated semiconductor micro-ring resonators (MRR) for fast-response sensing applications is proposed and numerically studied. The basic sensing scheme consists of two MRRs in an add/drop signal configuration; the first MRR plays the role of the measuring sensor, while the second one acts as a reference optical filter that converts any frequency shift induced in the spectral characteristics of the measuring sensor into optical power variations. The proposed photonic sensor has the potential to adjust its transfer function dynamically, due to the varying response of the MMRs to different operating conditions, exhibiting either an ultra-low resolution operation capable of detecting extremely small refractive index changes, or an operation with a wide dynamic range. Finally, we propose a more sophisticated approach for simultaneous interrogation that incorporates multiple MRR sensors, based on thermal heaters that modulate the response of each MRR sensor with different modulation frequencies. In contrast to the conventional interrogation techniques, the proposed configurations enable ultra-high sampling rates crucial for studying fast biochemical reactions, such as enzyme kinetics.

Published in:

Sensors Journal, IEEE  (Volume:11 ,  Issue: 7 )