By Topic

Energy-efficient application-aware online provisioning for virtualized clouds and data centers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Rodero, I. ; NSF Center for Autonomic Comput., Rutgers, State Univ. of New Jersey, Piscataway, NJ, USA ; Jaramillo, J. ; Quiroz, A. ; Parashar, M.
more authors

As energy efficiency and associated costs become key concerns, consolidated and virtualized data centers and clouds are attractive computing platforms for data- and compute- intensive applications. These platforms provide an abstraction of nearly-unlimited computing resources through the elastic use of pools of consolidated resources, and provide opportunities for higher utilization and energy savings. Recently, these platforms are also being considered for more traditional high-performance computing (HPC) applications that have typically targeted Grids and similar conventional HPC platforms. However, maximizing energy efficiency, cost-effectiveness, and utilization for these applications while ensuring performance and other Quality of Service (QoS) guarantees, requires leveraging important and extremely challenging tradeoffs. These include, for example, the tradeoff between the need to efficiently create and provision Virtual Machines (VMs) on data center resources and the need to accommodate the heterogeneous resource demands and runtimes of these applications. In this paper we present an energy-aware online provisioning approach for HPC applications on consolidated and virtualized computing platforms. Energy efficiency is achieved using a workload-aware, just-right dynamic provisioning mechanism and the ability to power down subsystems of a host system that are not required by the VMs mapped to it. We evaluate the presented approach using real HPC workload traces from widely distributed production systems. The results presented demonstrated that compared to typical reactive or predefined provisioning, our approach achieves significant improvements in energy efficiency with an acceptable QoS penalty.

Published in:

Green Computing Conference, 2010 International

Date of Conference:

15-18 Aug. 2010