By Topic

Accurate modeling and prediction of energy availability in energy harvesting real-time embedded systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Lu ; Dept. of Electr. & Comput. Eng., Binghamton Univ., Binghamton, NY, USA ; Shaobo Liu ; Qing Wu ; Qinru Qiu

Energy availability is the primary subject that drives the research innovations in energy harvesting systems. In this paper, we first propose a novel concept of effective energy dissipation that defines a unique quantity to accurately quantify the energy dissipation of the system by including not only the energy demand by the electronic circuit, but also the energy overhead incurred by energy flows amongst system components. This work also addresses the techniques in run-time prediction of future harvested energy. These two contributions significantly improve the accuracy of energy availability computation for the proposed Model-Accurate Predictive DVFS algorithm, which aims at achieving best system performance under energy harvesting constraints. Experimental results show the improvements achieved by the MAP-DVFS algorithm in deadline miss rate. In addition, we illustrate the trend of system performance variation under different conditions and system design parameters.

Published in:

Green Computing Conference, 2010 International

Date of Conference:

15-18 Aug. 2010