Cart (Loading....) | Create Account
Close category search window
 

Radix 2 division with over-redundant quotient selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Srinivas, H.R. ; Lucent Technol., AT&T Bell Labs., Murray Hill, NJ, USA ; Parhi, K.K. ; Montalvo, L.A.

In this paper we present a new radix 2 division algorithm that uses a recurrence employing simple 3-to-2 digit carry-free adders to perform carry-free addition/subtraction for computing the partial remainders in radix 2 signed-digit form. The quotient digit, during any iteration of the division recursion, is generated from the two most-significant radix 2 digits of the partial remainder and independent of the divisor in over-redundant radix 2 digit form (i.e., with digits which belong to the digit set {-2, -1, 0, +1, +2}). The over-redundant quotient digits are then converted to the conventional radix 2 digits (belonging to the set {-1, 0, +1}) by using a reduction technique. This division algorithm is well suited for IEEE 754 standard operands belonging to the range (1, 2) and is slightly faster than previously proposed radix 2 designs (such as the radix 2 SRT), which do not employ input scaling, since the quotient selection for such algorithms is a function of more than two most-significant radix 2 digits of the partial remainder. In comparison with the designs that employ input scaling, the proposed design although slightly slower saves hardware required for scaling purposes

Published in:

Computers, IEEE Transactions on  (Volume:46 ,  Issue: 1 )

Date of Publication:

Jan 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.