By Topic

On dictionary-based fault location in digital logic circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pomeranz, I. ; Dept. of Electr. & Comput. Eng., Iowa Univ., Iowa City, IA, USA ; Reddy, S.M.

In this work, fault location based on a fault dictionary is considered at the chip level. To justify the use of a precomputed dictionary in terms of computation time, the computational effort invested in computing a dictionary is first analyzed. The number of circuit diagnoses that need to be performed dynamically, without the use of precomputed knowledge, before the overall diagnosis effort exceeds the effort of computing a dictionary, is studied. Experimental results on ISCAS-85 circuits show that for relatively small numbers of diagnoses, a precomputed dictionary is more efficient than dynamic diagnosis. Next, a method to derive small dictionaries without losing resolution of modeled faults is proposed, based on extended pass/fail analysis. The same procedure is applicable for selecting internal observation points to increase the resolution of the test set. Methods to compact the resulting dictionary further, using compaction techniques generally applied to fault detection, are then described. Experimental results are presented to demonstrate the effectiveness of the proposed methods

Published in:

Computers, IEEE Transactions on  (Volume:46 ,  Issue: 1 )