By Topic

Eigenvalue Analysis and Longtime Stability of Resonant Structures for the Meshless Radial Point Interpolation Method in Time Domain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kaufmann, T. ; Lab. for Electromagn. Fields & Microwave Electron. (IFH), ETH Zurich, Zürich, Switzerland ; Engstrom, C. ; Fumeaux, C. ; Vahldieck, R.

A meshless collocation method based on radial basis function (RBF) interpolation is presented for the numerical solution of Maxwell's equations. RBFs have attractive properties such as theoretical exponential convergence for increasingly dense node distributions. Although the primary interest resides in the time domain, an eigenvalue solver is used in this paper to investigate convergence properties of the RBF interpolation method. The eigenvalue distribution is calculated and its implications for longtime stability in time-domain simulations are established. It is found that eigenvalues with small, but nonzero, real parts are related to the instabilities observed in time-domain simulations after a large number of time steps. Investigations show that by using global basis functions, this problem can be avoided. More generally, the connection between the high matrix condition number, accuracy, and the magnitude of nonzero real parts is established.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:58 ,  Issue: 12 )