Cart (Loading....) | Create Account
Close category search window
 

Ortho-Rectification and Slope Correction of SAR Data Using DEM and Its Accuracy Evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shimada, M. ; Earth Obs. Res. Center (EORC), Japan Aerosp. Exploration Agency (JAXA), Tsukuba, Japan

This paper proposes an accurate ortho-rectification and slope correction method for Synthetic Aperture Radar (SAR) images using a digital elevation model (DEM). Since SAR observation is performed in the squint condition, the image is distorted both geometrically and radiometrically (e.g., through foreshortening, range and azimuth shift, layover, radiometric modulation associated with slope, and shadowing). Furthermore, the pixel height cannot be retrieved directly even when orbital data are accurate. The proposed method calculates the geometric and radiometric distortion components from a comparative process between the DEM-based Simulated SAR Image (DSSI) and the SAR slant range image. When applied to Advanced Land Observing Satellite (ALOS) Phased Array Type L-band SAR (PALSAR) data, the geometric accuracy of the ortho-rectified SAR image at the off-nadir angle of 34.3° was high, with a Root Mean Square Error (RMSE) of 11.9 m when evaluated against Ground Control Points (GCPs) deployed globally. The slope correction effectively reduced the radiometric variation caused by the terrain height variation. The proposed method can be applied to a range of SAR data to support a diversity of applications.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:3 ,  Issue: 4 )

Date of Publication:

Dec. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.