By Topic

Ship-Suspended Acoustical Transmitter Position Estimation and Motion Compensation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rex K. Andrew ; Applied Physics Laboratory, University of Washington, Seattle, WA, USA ; Michael R. Zarnetske ; Bruce M. Howe ; James A. Mercer

An acoustical transmitter was suspended at multiple depths to 800 m from the research vessel R/V Melville at several stations in the North Pacific in 2004. The 3-D position of the transmitter varied with time due to ship motion and subsurface currents. The transmitter 3-D position and velocity were subsequently estimated using a cable dynamics model forced by ship position, as measured by high-precision global positioning system (GPS), and subsurface currents, as measured by the onboard acoustical Doppler current profiler. These estimated positions and velocities varied in the horizontal up to 10 m from the station “center” position, and 0.5 m/s from zero, respectively. Auxiliary measurements indicate that these estimates were accurate along either horizontal coordinate to better than 2 m and 0.05 m/s, respectively. Transmitter motion dilates the apparent time base of the radiated signal, producing time-varying Doppler effects. Simulation and analysis are used to determine when the induced Doppler effect is significant, and a technique is presented that “de-dopplerizes” a received signal for arbitrary interplatform motion. One example, involving the transmitter motion solutions determined here, shows that the transmitter motion induces a root mean square (RMS) variability of roughly for a 75-Hz ranging signal on time scales of several minutes: a 41-point de-dopplerizing filter reduced this to .

Published in:

IEEE Journal of Oceanic Engineering  (Volume:35 ,  Issue: 4 )