By Topic

Memory Devices: Energy–Space–Time Tradeoffs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Zhirnov, V.V. ; Semicond. Res. Corp., Durham, NC, USA ; Cavin, R.K. ; Menzel, Stephan ; Linn, E.
more authors

Many memory candidates based on beyond complementary metal-oxide-semiconductor (CMOS) nanoelectronics have been proposed, but no clear successor has yet been identified. In this paper, we offer a methodology for system-level analysis and address the relationship of the maximum performance of a given memory device type to device physics. The method is illustrated for the classical dynamic RAM (DRAM) device and for the emerging memory device known as the resistive RAM (ReRAM).

Published in:

Proceedings of the IEEE  (Volume:98 ,  Issue: 12 )