By Topic

Wavelet Domain Local Binary Pattern Features For Writer Identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Liang Du ; Huazhong Univ. of Sci. & Technol., Wuhan, China ; Xinge You ; Huihui Xu ; Zhifan Gao
more authors

The representation of writing styles is a crucial step of writer identification schemes. However, the large intra-writer variance makes it a challenging task. Thus, a good feature of writing style plays a key role in writer identification. In this paper, we present a simple and effective feature for off-line, text-independent writer identification, namely wavelet domain local binary patterns (WD-LBP). Based on WD-LBP, a writer identification algorithm is developed. WD-LBP is able to capture the essence of characteristics of writer while ignoring the variations intrinsic to every single writer. Unlike other texture framework method, we do not assign any statistical distribution assumption to the proposed method. This prevent us from making any, possibly erroneous, assumptions about the handwritten image feature distributions. The experimental results show that the proposed writer identification method achieves high accuracy of identification and outperforms recent writer identification method such as wavelet-GGD model and Gabor filtering method.

Published in:

Pattern Recognition (ICPR), 2010 20th International Conference on

Date of Conference:

23-26 Aug. 2010