By Topic

Continuous Markov Random Field Optimization Using Fusion Move Driven Markov Chain Monte Carlo Technique

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wonsik Kim ; Dept. of EECS, Seoul Nat. Univ., Seoul, South Korea ; Kyoung Mu Lee

Many vision applications have been formulated as Markov Random Field (MRF) problems. Although many of them are discrete labeling problems, continuous formulation often achieves great improvement on the qualities of the solutions in some applications such as stereo matching and optical flow. In continuous formulation, however, it is much more difficult to optimize the target functions. In this paper, we propose a new method called fusion move driven Markov Chain Monte Carlo method (MCMC-F) that combines the Markov Chain Monte Carlo method and the fusion move to solve continuous MRF problems effectively. This algorithm exploits powerful fusion move while it fully explore the whole solution space. We evaluate it using the stereo matching problem. We empirically demonstrate that the proposed algorithm is more stable and always finds lower energy states than the state-of-the art optimization techniques.

Published in:

Pattern Recognition (ICPR), 2010 20th International Conference on

Date of Conference:

23-26 Aug. 2010