Cart (Loading....) | Create Account
Close category search window
 

A Bias-Variance Analysis of Bootstrapped Class-Separability Weighting for Error-Correcting Output Code Ensembles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Smith, R.S. ; Centre for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK ; Windeatt, T.

We investigate the effects, in terms of a bias-variance decomposition of error, of applying class-separability weighting plus bootstrapping in the construction of error-correcting output code ensembles of binary classifiers. Evidence is presented to show that bias tends to be reduced at low training strength values whilst variance tends to be reduced across the full range. The relative importance of these effects, however, varies depending on the stability of the base classifier type.

Published in:

Pattern Recognition (ICPR), 2010 20th International Conference on

Date of Conference:

23-26 Aug. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.