Cart (Loading....) | Create Account
Close category search window
 

AR-PCA-HMM Approach for Sensorimotor Task Classification in EEG-based Brain-Computer Interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Argunsah, A.O. ; Fac. of Eng. & Natural Sci., Sabanci Univ., Istanbul, Turkey ; Cetin, M.

We propose an approach based on Hidden Markov models (HMMs) combined with principal component analysis (PCA) for classification of four-class single trial motor imagery EEG data for brain computer interfacing (BCI) purposes. We extract autoregressive (AR) parameters from EEG data and use PCA to decrease the number of features for better training of HMMs. We present experimental results demonstrating the improvements provided by our approach over an existing HMM-based EEG single trial classification approach as well as over state-of-the-art classification methods.

Published in:

Pattern Recognition (ICPR), 2010 20th International Conference on

Date of Conference:

23-26 Aug. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.