By Topic

3D Human Body Modeling Using Range Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yamauchi, K. ; Center for Res. in Intell. Syst., Univ. of California, Riverside, CA, USA ; Bhanu, B. ; Saito, H.

For the 3D modeling of walking humans the determination of body pose and extraction of body parts, from the sensed 3D range data, are challenging image processing problems. Real body data may have holes because of self-occlusions and grazing angle views. Most of the existing modeling methods rely on direct fitting a 3D model into the data without considering the fact that the parts in an image are indeed the human body parts. In this paper, we present a method for 3D human body modeling using range data that attempts to overcome these problems. In our approach the entire human body is first decomposed into major body parts by a parts-based image segmentation method, and then a kinematics model is fitted to the segmented body parts in an optimized manner. The fitted model is adjusted by the iterative closest point (ICP) algorithm to resolve the gaps in the body data. Experimental results and comparisons demonstrate the effectiveness of our approach.

Published in:

Pattern Recognition (ICPR), 2010 20th International Conference on

Date of Conference:

23-26 Aug. 2010