By Topic

Recognizing Human Actions Using Key Poses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Baysal, S. ; Dept. of Comput. Eng., Bilkent Univ., Ankara, Turkey ; Kurt, M.C. ; Duygulu, P.

In this paper, we explore the idea of using only pose, without utilizing any temporal information, for human action recognition. In contrast to the other studies using complex action representations, we propose a simple method, which relies on extracting “key poses” from action sequences. Our contribution is two-fold. Firstly, representing the pose in a frame as a collection of line-pairs, we propose a matching scheme between two frames to compute their similarity. Secondly, to extract “key poses” for each action, we present an algorithm, which selects the most representative and discriminative poses from a set of candidates. Our experimental results on KTH and Weizmann datasets have shown that pose information by itself is quite effective in grasping the nature of an action and sufficient to distinguish one from others.

Published in:

Pattern Recognition (ICPR), 2010 20th International Conference on

Date of Conference:

23-26 Aug. 2010